Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats.

نویسندگان

  • Yan-Fang Zhao
  • De-Liang Zeng
  • Lun-Guo Xia
  • Song-Mei Zhang
  • Lian-Yi Xu
  • Xin-Quan Jiang
  • Fu-Qiang Zhang
چکیده

Type 1 diabetes mellitus (T1DM) is associated with a series of bone complications, which are still a great challenge in the clinic. Bone marrow stromal cells (BMSCs) are crucial to bone remodeling and are attractive candidates for tissue engineering. Hence, we aimed to investigate whether impaired functions of BMSCs play a role in the pathogenesis of bone complications associated with T1DM. BMSCs were isolated from normal and streptozotocin-induced diabetic rats, and their proliferation and osteogenic differentiation ability were analyzed. Diabetic BMSCs demonstrated reduced proliferation ability, osteoblast gene expression, alkaline phosphatase activity and mineralization. Nude mice transplanted with diabetic BMSCs in a calcium phosphate cement scaffold exhibited reduced new bone formation, as detected by hematoxylin and eosin staining and immunohistochemistry. These changes may be partially related to impaired insulin and insulin-like growth factor 1 (IGF-1) signaling. Weak gene expression of insulin receptor (IR), IGF-1, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor substrate-1 (IRS-1) was observed in the diabetic BMSCs compared with normal BMSCs, together with decreased protein level of IGF-1, IGF-1R, IRS-1 and phosphorylated extracellular signal-regulated kinase. Therefore, impaired proliferation and osteogenic potential of BMSCs may be responsible for bone complications related to T1DM, mediated partially by impaired insulin and IGF-1 signaling. These findings may provide a new target with which to devise strategies for therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rhPDGF-BB Promotes Proliferation and Osteogenic Differentiation of Bone Marrow Stromal Cells from Streptozotocin-Induced Diabetic Rats through ERK Pathway

Management of nonunion fracture and massive segmental bone defects in diabetes remains a challenging clinical problem. Bone marrow stromal cells (BMSCs) are crucial for bone remodeling and hold promise for bone regeneration. However, we have showed previously that diabetes can affect the proliferation and osteogenic potential of BMSCs adversely and a strategy to attenuate the impaired functions...

متن کامل

High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells

Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic cha...

متن کامل

Bone-Marrow-Derived Mesenchymal Stromal Cells (MSC) from Diabetic and Nondiabetic Rats Have Similar Therapeutic Potentials

BACKGROUND Diabetes mellitus is a severe chronic disease leading to systemic complications, including cardiovascular dysfunction. Previous cell therapy studies have obtained promising results with the use bone marrow mesenchymal stromal cells derived from healthy animals (MSCc) in diabetes animal models. However, the ability of MSC derived from diabetic rats to improve functional cardiac parame...

متن کامل

The Effect of Bone Marrow Derived Mesenchymal Stem Cells on the Survival of Random Skin Flap on Sterptozotocin-Induced Diabetic Rats

Background & Objective:  Wound dressing and healing in diabetic patients is encountered with many problems. This study aims to investigate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on the survival of random skin flap (RSF) on Streptozotocin-induced diabetic rats (STZ) using an optical microscope. Materials & Methods:  In this study, 60 male Albino Wistar rats were used...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 31 3  شماره 

صفحات  -

تاریخ انتشار 2013